Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 2824-2837, 2020.
Article in Chinese | WPRIM | ID: wpr-878532

ABSTRACT

In order to explore the microbial communities and functions of activated sludge in an Anaerobic-anoxic-oxic (A²/O) process under the start-up of Actinic reaction enzyme system (ARES) system and to understand the impact of the ARES system in domestic sewage treatment process, the activated sludge microbial community structure in the A²/O process system before and after ARES system start-up was analyzed by Illumina-HiSeq 2000 high-throughput sequencing platform. By combining with the main parameters related to the effect of sewage treatment, we analyzed the environmental functions of the microbial communities. The microbial community structure of activated sludge was significantly different before and after the ARES system start-up. There were 9 main bacterial phyla in the system (average relative abundance ≥1%), accounting for 96%-98% of the total bacteria sequenced. After the ARES system was started, the relative abundance of Betaproteobacteria and Chlorobi increased by 3.45%-3.85% and 0.45%-2.61%, respectively. In the anaerobic unit, the relative abundance of Bacteroidetes increased by 12.97%, while the Actinobacteria and Firmicutes decreased by 9.60% and 1.45%, respectively. At the genus level of bacteria, the relative abundance of Denitratisoma increased by 0.80%-3.27%, while the Haliangium and Arcobacter decreased by 3.36%-4.52% and 1.48%-3.45%, respectively. The relative abundance of bacteria was significantly different before and after the ARES system start-up. There were 7 abundant fungi phyla (average relative abundance ≥1%) in the system. After the ARES system was started, the relative abundance of Rozellomycota decreased by 42.71%-46.77%. In the anaerobic unit, the relative abundance of Ascomycota decreased by 13.39%, while the relative abundance of Glomeromycota increased by 13.86%. At the genus level of fungi. The relative abundance of Entomophthoraceae sp. and Glomcromycota sp. increased by 31.35%-36.50% and 6.27%-13.84%, respectively, while the Rozellomycota sp. and Xylochrysis lucida decreased by 42.71%-46.77% and 3.67%-5.54%, respectively. Our results showed that the application of ARES system caused the response of the microbial community to environmental changes, especially for the fungi communities, in the meanwhile, improved the effluent quality, especially the removal rate of total nitrogen.


Subject(s)
Anaerobiosis , Ascomycota , Bioreactors , Microbiota , Nitrogen , Sewage , Waste Disposal, Fluid
2.
Journal of Zhejiang University. Medical sciences ; (6): 204-213, 2019.
Article in Chinese | WPRIM | ID: wpr-775233

ABSTRACT

Studies have shown that chronic inflammatory response plays a key role in intracranial aneurysms (IA) formation and progression, and macrophages regulate the formation and progression of IA through a variety of pathways. Bone marrow monocyte-derived macrophages and resident-tissue macrophages infiltrate the vessel wall, after infiltration macrophages are polarized into various polarization phenotypes dominated by M1-like and M2-like cells. Polarized phenotypes of macrophages can regulate the formation and progression of intracranial aneurysms by releasing cytokines and regulating the inflammatory response of other immune cells, as well as release different cytokines to regulate the process of extracellular matrix remodeling. Some important progresses have been made in the clinical detection and treatment in targeting macrophages. This review provides a summary on the pathogenesis of IA and potential drug targets to prevent the formation and rupture of intracranial aneurysms.


Subject(s)
Humans , Cytokines , Disease Progression , Inflammation , Intracranial Aneurysm , Drug Therapy , Pathology , Macrophages , Metabolism
3.
Journal of Zhejiang University. Medical sciences ; (6): 552-559, 2019.
Article in Chinese | WPRIM | ID: wpr-819047

ABSTRACT

Vascular smooth muscle cells (VSMC) are the main cellular component of vessel wall. The changes of VSMC functions including phenotypic transformation and apoptosis play a critical role in the pathogenesis of intracranial aneurysm (IA). Autophagy can participate in the regulation of vascular function by regulating cell function. In the initial stage of IA, the activation of autophagy can accelerate the phenotypic transformation of VSMC and inhibit VSMC apoptosis. With the progress of IA, the relationship between autophagy and apoptosis changes from antagonism to synergy or promotion, and a large number of apoptotic VSMC lead to the rupture of IA. In this review, we describe the role of autophagy regulating the function of VSMC in the occurrence, development and rupture of IA, for further understanding the pathogenesis of IA and finding molecular targets to prevent the formation and rupture of IA.


Subject(s)
Humans , Autophagy , Intracranial Aneurysm , Pathology , Muscle, Smooth, Vascular , Cell Biology , Myocytes, Smooth Muscle , Cell Biology
SELECTION OF CITATIONS
SEARCH DETAIL